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ABSTRACT

The most important advantage of wide-field cameras is, precisely, the "wide-field", since this offers
the observers the possibility of obtaining vast amounts of data in a much shorter observing time.
However, for a reliable data interpretation it is necessary a proper data calibration. Concerning the
flatfielding of images, many times it is required to obtain several integrations in blank regions (sky
patches without bright sources) nearby to the science target areas. In this work we present an
systematic approach to obtain a catalogue of useful blank regions, based on the application of the
Delaunay triangulation of the sky.

1. THE DELAUNAY TRIANGULATION

The Delaunay triangulation (Delaunay 1934) consists in a subdivision of a geometric object (e.g. a
surface or a volume) into a set of simplices. A simplex, or n-simplex, is the n-dimensional analogue
of a triangle. More precisely, a simplex is the convex hull (convex envelope) of a set of n+1points.
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In particular, for the Euclidean planar case, given a set of points (also
called nodes) the Delaunay triangulation becomes a subdivision of the
plane into triangles, which vertices are nodes. For each of these
triangles, it is possible to determine its associated circumcircle, the
circle passing exactly through the three vertices of the triangle, and
which center, the circumcentre, can easily be computed as the
intersection of the three perpendicular bisectors (see Figure 1: the A
circumcircle passes through the nodes A, B and C; the circumcentre is
the red point O).

Interestingly, in a Delaunay triangulation all the triangles satisty
the empty circumcircle interior property, which stays that all
the circumcircles are empty, i.e., there are no nodes inside any of
the computed circumcircles (see Figure 2).

The Delaunay triangulation is closely related to the Voronoi
tessellation (Voronoi 1908), also called Dirichlet tessellation,
which in the simple planar case is a decomposition of the plane
Into individual regions surrounding each node, such as all the
points within a given region are closer to its corresponding node
than to any other node. The Voronoi tessellation can be
immediately built from the Delaunay triangulation by joining the
circumcentres of all the circumcircles (see Figure 3, where the
Delaunay triangulation is shown in black and the Voronoi
tessellation is displayed in red).

Figure 2

The Delaunay triangulation is not restricted to the Euclidean Figure 3

two-dimensional (2-D) case. It can be applied to other 2-D
surfaces (e.g. The surface of a 3-D sphere) and to objects of
higher dimension. For example, when considering the
Euclidean three-dimensional space, the Delaunay triangulation
becomes a partition of that space into tetrahedrons, and the
empty circumcircle interior property implies that there are no
nodes within the corresponding circumspheres.

2. APPLYING THE DELAUNAY TRIANGULATION TO THE CELESTIAL SPHERE

The empty circumcircle interior property of the Delaunay triangulation provides a straightforward
method for a systematic search of regions in the celestial sphere free from bright objects. If one
computes the Delaunay triangulation in the 2-D surface of a sphere, using as nodes the location of
the stars down to a given threshold magnitude, the above property guarantees that all the
circumcircles are void of stars brighter than that magnitude. Thus, the circumdiameter of every
circumcircle determines the maximum field of view that can be observed in that region of the sky
without including bright stars.

In order to proceed with the triangulation, we have made use of STRIPACK (Renka 1997), a
Fortran 77 software package that employs an incremental algorithm to built a Delaunay triangulation
of a set of points on the surface of the unit sphere. For N nodes, the storage requirement for the
triangulation is 13N integer storage locations in addition to 3N nodal coordinates. The triangulation
can be constructed with time complexity O(N log N). The original software was written using single-
precision floating arithmetic. For the work presented here, we have modified the software to work
using double-precision floating arithmetic, which is required in order to properly compute the
triangulation when dealing with star separations approaching a few arcseconds.

3. PREPARING THE NODES FOR THE TRIANGULATION

In this work we have applied the Delaunay triangulation to the celestial sphere using as source for
the star coordinates the Bright Star Catalogue, 5" Revised Edition (Hoffleit & Warren 1991;
available at CDS). This catalogue contains 9110 objects, although we have imposed a threshold
visual magnitude of 6.5, which leads to an initial sample of 8404 stars. This initial collection of stars
Is still not suitable to compute the Delaunay triangulation due to the presence of stars with a too
small separation to other stars (or even identical coordinates). For that reason, we decided to
"merge" into single objects all the stars closer than a predefined angular resolution value. The
resulting visual magnitude for the combined objects was computed as the sum of the fluxes of the
merged stars. The coordinates of the new objects were placed in the line connecting the merged
stars, closer to the brightest star (using a weighting scheme dependent on the individual
brightnesses of the combined stars). Finally we have adopted an angular resolution of 5
arcseconds, which transform the initial magnitude-filtered catalogue of 8404 stars into a new
catalogue containing 8373 objects.

4. RESULTS

The resulting Delaunay triangulation leads to 16742 spherical triangles and, thus, the same number
of circumcircles. For every circumcircle we determined its associated circumradius, measured as
half the angle subtended by the circumcircle as viewed from the centre of the celestial sphere.
Twice this angle correspond to the maximum field of view void of bright stars in that region of the
sky. The main results, displayed in Figures 1 to 10, show that, as it is expected, the larger empty
regions are found at high galactic latitudes.
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Figure 4: The whole celestial sphere using a Lambert projection in galactic
coordinates. Stars are displayed down to a visual magnitude of 6.5.
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Figure 5: Same figure than above, but including the resulting Delaunay triangulation.
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Figure 6 (upper left): sky region around the Orion constellation. Figure 7 (upper right): the same
region overplotting the Delaunay triangulation (grey lines) and the associated circumcircles
(magenta).
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5. FUTURE WORK

We plan to extend this work in the future by using star catalogues including fainter magnitudes. That
extension must take into account some critical aspects associated with these kind of catalogues that
must be considered with caution. For example: (1) the completeness of the catalogues to a given
limiting magnitude; (2) the accuracy and availability of photometric measurements in different
bands; (3) the accuracy of the star positions (this is not such a critical issue since in our treatment
we are applying a spatial resolution threshold of the order of a few arcseconds); and (4) avoid
duplicity in the catalogues.

The plan is to generate a catalogue of blank regions that can be accessed through the WEB.
Obviously, in this work we have ignored Solar System objects. They must be taken into account in
order to make use of regions close to the Ecliptic at a given date.
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